
CTEC3604 – Multi-service Networks

Network File Transfer Application

Christian Manning

July 8, 2014

Contents

1 Introduction 2

2 Similar Applications 2

2.1 File Transfer Protocol (FTP) . 2

2.2 Secure Copy (SCP) . 2

2.3 rsync . 3

3 Functional Requirements 3

4 Testing 3

5 Evaluation 4

6 Conclusion 6

1

1 Introduction

The aim of this project is to create an application which utilises TCP to transfer files over a

network. The application is required to use Berkeley sockets and a client-server architecture

allowing multiple client connections.

2 Similar Applications

This section contains the evaluations of similar applications or protocols in an attempt to gather

the needed requirements for this project.

2.1 File Transfer Protocol (FTP)

FTP [2] is a protocol specifically designed for the transfer of files using TCP. It uses a client-server

architecture, with many clients being allowed to connect to a server. For each client connected

to the server, there is a control connection which is initiated by connecting to a pre-specified

port (default 21). This control connection is the means by which commands are send from the

client to the server, and replies are sent from the server to a client. This is achieved using the

Telnet protocol [3].

When a command sent by the client requires data in reply, another connection is established

specifically for data transfers, from the data port (default 20). Because of it using multiple ports,

FTP is known as an out-of-band protocol. This data can be text or binary data and can be sent

in blocks, as a stream or compressed.

FTP requires clients to login with a username and password, though the username may be

‘anonymous’ if the server is configured to allow anonymous access. The client then has the same

access and permissions as that of the user they are logged in. The transferred data, commands

and replies themselves are not encrypted in any way.

The client can provide a shell-like command line interface with which the user enters com-

mands and text replies are shown, or a graphical user interface (GUI). Some commands are

as follows: LIST (list directory entries), CWD (change working directory), DELE (delete file),

RETR (transfer file), et al. These commands allow the user to browse the remote file system so

that the available files can become known.

2.2 Secure Copy (SCP)

SCP is a secure network equivalent of the common cp (file copy) shell command. It uses the SSH

[4] protocol, though provides no shell access, only the transferral of files. Because of it being

based on SSH it is very secure as all network communications undertaken by SCP are encrypted.

Its simple interface limits its usefulness to situations where only a simple copy is needed from one

host to another. The remote file systems cannot be browsed as with FTP, requiring knowledge

2

from the user of the file system layout if the file is destined for anywhere other than the users

remote home directory.

The security features of this application are one of its primary benefits, but they are beyond

the scope of this project.

2.3 rsync

rsync is an application intended to replace SCP with a focus on synchronising files and directories

across computers, which makes it a popular backup tool. It does this by comparing the checksums

(or sometimes the modification date) of files on both hosts and if they differ, the transfer is

initiated. Its interface is similar to that of SCP and is highly script-able. rsync can operate in

daemon mode by listening on its default TCP port of 873, or it can operate using SSH requiring

the rsync client to be on both hosts. Daemon mode is generally used for the purpose of mirroring

servers, minimising data transfers for the server.

While rsync is more featureful than SCP, it still doesn’t have the ability to browse the remote

file system like FTP, requiring an alternate application (eg. SSH) for this functionality.

3 Functional Requirements

The following requirements were realised from determining which of the above existing applica-

tions’ features were suitable for this project and combining some.

• Client-server architecture.

• Allow multiple clients to connect to a single server simultaneously.

• Shell-like user interface.

• Ability to browse the file system client and server-side, i.e. change working directory, list

directory contents, get file size, etc.

• Transfer files from the server to the client, and vice versa.

• Separate control connection and data connection. Use the data connection for binary data

only; the control connection can accept textual replies.

4 Testing

This section will show tests of one of the major features listed above: the file transfers themselves.

The tests have been carried out over a Gigabit Ethernet LAN with both the client and server hosts

running GNU/Linux. These tests will demonstrate the applications reliability in this situation

and will also show its error handling capabilities. All files used are randomly generated.

3

C denotes the client, S denotes the server, → or ← denotes direction of transfer. The files

used in these tests are identified by their size.

Test Expected Result Actual Result

1 100MB file S → C
MD5 checksums

match

original: 8ddeb39c79c6429d684bd69a3c18a692

got: 8ddeb39c79c6429d684bd69a3c18a692

2 1000MB file S → C
MD5 checksums

match

original: 845087542715041a9241c07764c5bfb0

got: 845087542715041a9241c07764c5bfb0

3 4.5GB file S → C
MD5 checksums

match

original: 6faa2c90b333573cc040cede7203592e

got: 6faa2c90b333573cc040cede7203592e

4 200MB file C → S
MD5 checksums

match

original: 08c2a37ef2bfa7c529a8d0071e64f9c0

got: 08c2a37ef2bfa7c529a8d0071e64f9c0

5 2000MB file C → S
MD5 checksums

match

original: 2963e7928261f9c7dd3386c86f73a330

got: 2963e7928261f9c7dd3386c86f73a330

6 3.5GB file C → S
MD5 checksums

match

original: d1acc5f957330dfdfedac7ab152d3937

got: d1acc5f957330dfdfedac7ab152d3937

7

User interrupt on

client during trans-

fer (ctrl-c)

Server safely

stops operations

on client

Server safely stops operations on client. Server

messages detailed below.

8

Remove the Eth-

ernet cable during

transfer

TCP connection

will eventually

time out

TCP connection times out after 10+ minutes.

If the cable is reconnected in this time, the

transfer resumes successfully.

The following messages are produced by the server instance during test number 7, accompa-

nied by some short explanations.

A network error occurred sendFile throws a NetworkErrorException with this message. This

exception is caught in the clientHandler function which prints its message, then ends this

specific server instance.

Client thread ending Client thread safely ending.

Removing client. No. clients: 0 Client thread removed and the client count is updated. The

server is still operating as normal and can accept new client connections.

5 Evaluation

Both the server and client were implemented using the D programming language [1] with the

standard library and no external libraries. Version 2.058 of the compiler, runtime and standard

library was used throughout the implementation of this project.

The code for this project has been split into three parts, or modules: client, server and util.

The util module contains all functionality common to both the client and the server, and also

4

some usage specific code. This was done to reduce code duplication and also so that the main

logic of client and server was kept to a minimum in an attempt to increase their readability and

ease understanding.

The server has successfully enabled the simultaneous connection of multiple clients by util-

ising a multi-threaded architecture thanks to the technique of message passing employed by the

std.concurrency module (std. prefix refers to the D standard library). This is made very easy

and safe by D as it uses thread-local storage by default, limiting data sharing to explicit and

controlled operations. To take advantage of this, server was created in a modular fashion: there

is the main thread, the listener thread, and a thread for each connected client. These threads

communicate using the following functions: send, receive, receiveOnly and receiveTimeout. These

are not to be confused with socket operations, which are methods of the Socket class.

Socket operations are, by default on POSIX compliant systems, blocking, meaning the opera-

tion stalls its thread until it is completed or it failed. This is problematic, as if the sockets block

then there is no way to receive messages from other threads, meaning all network operations will

need to finish before all threads can end. A solution to this problem is to use I/O multiplexing

with the select system function with a short (10ms) time out value, in combination with a call

to receiveTimeout with a 1µs time out. The time out value for select was chosen due to being

an insignificant period of time, though long enough that not too many CPU cycles are used.

receiveTimeout ’s time out value was chosen to be so small so that it wouldn’t block. This is a

better solution than just adding a time out value to a blocking socket as select polls multiple

sockets until one or more is ready. This has allowed for receiving errors during a file transfer,

for example, an operation that couldn’t be accomplished previously without blocking one or the

other operation.

FTP ’s method of using separate sockets for control and data has worked well for this project,

though it is perhaps an unnecessary overhead. Protocols such as HTTP do not use this method

and cope well with many situations. A server without this structure would mean that any

transfers, whether file data, text, errors, etc. would all use the same connection. For implementing

this, all data would have to be contained in a common structure for transportation so that

the message type could be determined and processed appropriately. This would be a great

improvement for a future revision of this project.

The shell-like interface provides a highly usable user experience, though there are some lim-

itations. The implementation simply consists of a loop, with a call to readln at its beginning.

While this method has merit in its simplicity, it does not include any key handling functionality.

This means that the user cannot use the arrow keys for doing things such as moving the cursor

to edit a command, or selecting a previously entered command. It should be noted however,

that Windows integrates these features in its cmd and PowerShell applications. On a POSIX

compliant system, the interface is able to produce colours using ANSI colour codes. This is

used for differentiating between files and directories when listing the contents of a remote or

local directory. It is also possible for this to be implemented on Windows based systems using

5

the SetConsoleTextAttribute function; a potential future improvement. Another feature of the

interface is the presence of progress bars, indicating progress of a file transfer to the client user.

This is implemented using ANSI escape codes on POSIX systems and carriage return on Win-

dows. While this is a nice feature, it currently doesn’t show the current speed of transfer, or

an estimated finishing time, only the overall average speed and time taken values are printed on

completion. This is a desirable feature and could improve usability in a future version.

The commands implemented in this project work correctly for both remote and local usage,

where appropriate. The local commands are the same as the remote, but prefixed with loc. The

commands currently included are: pwd, cd, ls, du, mkdir, rm, cptr and cpfr. These commands

provide basic functionality for browsing and manipulating the local and remote file systems,

though others could be included, such as a local copy and move.

There is also a major security risk in this projects implementation, due to no awareness of

users. Currently the connected client has all the permissions of the user the server is being ran

as, which means there is the potential for the client to accomplish things that they shouldn’t,

especially if the server is ran as root. This issue coupled with the unencrypted data transmission

could allow remote intrusions to the server. This could be improved by forcing clients to login as

a user on the server or, like FTP, anonymously, and the server should operate as a non-interactive

user. Encryption of traffic could also be utilised through libraries such as OpenSSL or OpenSSH.

Both of these features were considered beyond the scope of this project.

6 Conclusion

This project has succeeded in implementing the required functionality, though it has several flaws

in security and usability, as noted above, along with potential improvements to help combat these

flaws.

One thing that hasn’t been mentioned is that the server does not function properly on Win-

dows systems. The exact cause of this is unknown, though the problem manifests as an indef-

inite stall when opening files for reading or writing. It is likely that the problem is caused by

the Windows implementation of std.concurrency as this functionality works as intended in the

single-threaded client, but that is yet to be determined.

References

[1] Walter Bright and Andrei Alexandrescu et al. D Programming Language. Digital Mars. 2012.

url: http://dlang.org (visited on 03/19/2012).

[2] J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (Standard). Updated by RFCs

2228, 2640, 2773, 3659, 5797. Internet Engineering Task Force, Oct. 1985. url: http://

www.ietf.org/rfc/rfc959.txt.

6

[3] J. Postel and J.K. Reynolds. Telnet Protocol Specification. RFC 854 (Standard). Updated

by RFC 5198. Internet Engineering Task Force, May 1983. url: http://www.ietf.org/

rfc/rfc854.txt.

[4] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Transport Layer Protocol. RFC 4253

(Proposed Standard). Internet Engineering Task Force, Jan. 2006. url: http://www.ietf.

org/rfc/rfc4253.txt.

7

