
IMAT3404 – Mobile Robotics

Implementing a Robot Controller for the PeopleBot

Christian Manning – p0928544x

De Montfort University

February 2012

Contents

1 Introduction 2

2 Architectural Design 2

3 Behavioural Design 3

3.1 Obstacle Avoidance . 3

3.2 Edge Following . 4

3.2.1 PID . 4

3.2.2 Tuning . 5

3.3 Wandering . 6

3.4 Mapping . 7

4 Experimental Design 8

4.1 Obstacle Avoidance . 8

4.2 Edge Following . 9

4.3 Wandering . 9

4.4 Mapping . 9

4.5 Architecture . 10

5 Results 10

5.1 Obstacle Avoidance . 10

5.2 Edge Following . 10

5.3 Wandering . 11

5.4 Mapping . 11

5.5 Architecture . 11

6 Conclusion 12

1

1 Introduction

The aim of this project is to design and implement a controller for the PeopleBot robot, using

C++ with Aria. The PeopleBot is a robot based around a Pioneer 3-DX design intended for

human-interaction projects. It uses sonar and lasers as environmental sensors. This project

entails the use of the sonar sensors and will utilise Aria software library for the control of

the robot, MobileSim for experimentation and testing, and Mapper for designing maps. This

document details design decisions for the architecture, behaviour and experiments, the reason

such decisions were made, and the the outcome of the project.

2 Architectural Design

The architecture of a robot controller concerns the coordination of a multitude of behaviours and

the summation of these different behaviours. This is an important aspect of controller design for

behaviour-based robots due to the inevitable conflicts of several behaviours and an architecture

can work to resolve those conflicts.

For this project, the architecture will be based around the subsumption model. A subsump-

tion architecture consists of many behaviours (or tasks) which are broken down into simple units

(e.g. move forward, avoid obstacle, etc.). These simple units can be modelled in a linear hier-

archy, their relative position outlining the priority of each unit. The priority of a unit denotes

whether it can suppress lower priority units, or can be suppressed by those with a higher priority.

The subsumption architecture is not concerned with what exactly the tasks aim to accomplish,

only the importance of each of them. This system of suppression allows important tasks to be

completed without being impeded by lesser tasks, while still letting lesser tasks execute when

more important ones are idle.

In each of the units, there is a finite state machine which determines what exactly the task

should be doing to accomplish its goal, or even whether it’s doing anything at all. What this

means is that there is some condition that must be met for a task to be attempted, and if more

than one task meets their condition then the one with the highest priority is the one which runs.

This has been implemented using switch statement (see figure 1) in each behaviour.

switch (s t a t e) {
case IDLE :

// d e t e c t o b s t a c l e s

case TURN LEFT:

// turn l e f t

case TURN RIGHT:

// turn r i g h t

}
Figure 1: A C++ switch
statement

Each behaviour maintains a state variable which represents a cer-

tain state that a behaviour can be, as an integer. An example,

that will be explained in more detail later in this document, is an

obstacle avoidance behaviour which will have three states: idle,

turn left, and turn right. In the idle state, there will be code which

determines if an obstacle is close and whether it is detected to the

right or to the left of the robot. If there is an obstacle, the state

is updated to turn left or turn right if the obstacle is to the right

or left of the robot, respectively.

2

These state machines are used to define a desired state to be

passed to Aria. Aria determines whether this desired state is unchanged, and if so allows a

lower priority behaviour to take the fore.

3 Behavioural Design

There are several behaviours required to be implemented for the robot controller in this project.

They are designed to conform to the above specified architecture, the details of which are below.

These behaviours are implemented using feedback control methods which determines its output

by taking in relevant sensor readings and adjusting accordingly which means that the environment

affects the robots behaviours.

All the listed behaviours are implemented as classes inheriting the ArAction class from Aria.

A single instance of each of these classes is instantiated in Aria’s main thread.

3.1 Obstacle Avoidance

The obstacle avoidance behaviour ensures that the robot does not come within 0.1m (100mm)

of an obstacle. This is accomplished by using a binary feedback control system. Binary control

creates a system of two states: on or off. In the case of this behaviour, the robot is either turning

or not.

The implementation of this has a 250mm proximity, or, the distance to an obstacle at which

the robot should start turning. This value for the proximity along with a heading of ±135◦ allows

obstacles to be totally avoided and the robot will not approach within 100mm of an obstacle.

The ±135◦ heading was chosen because it ensures that the robot gets clear of an obstacle. The

robot will not actually turn ±135◦ as this cannot be done in the time it takes for the desired

behaviour to be overridden, but when called many times successively the robot will turn very

sharply, potentially until the heading of ±135◦ is realised.

Figure 2: Sharp turn

Figure 2 shows a sharp turn caused by heading towards

an obstacle at a ±90◦ angle. In this situation the robot will

turn left, an arbitrary decision, likely resulting in turning

the full ±135◦ heading. A ±180◦ heading was not chosen so

as to let the robot’s movements be less monotonous. When

turning, the speed of the robot is also reduced to 25mm/s

to facilitate a tighter turning circle.

This behaviour is implemented in the Avoid class, whose

instance is given the highest priority of those implemented

with a value of 70 in Aria. The reason for this is that the

robot cannot come within 100mm of an obstacle and tasks

such as wander are likely to come across obstacles, so it is paramount that this task is able to

suppress all others concerned with movement.

3

3.2 Edge Following

The next behaviour is one which aims to follow any edges that are detected within 1.0m

(1000mm) at a distance of 0.5m (500mm). This requires a much more sophisticated method

of control than a simple binary feedback control as used above, namely a proportional-integral-

derivative (PID) controller, its constituent formulae shown in figure 3, where e is error and t is

time.

3.2.1 PID

P = Kpet

I = Ki

∫ t

0

eτdτ

D = Kd
d

dt
et

O = P + I +D

Figure 3: Formulae for Proportional,
Integral, Derivative and Overall out-
put values

A PID controller defines a set point, in this case the

desired distance to an edge, and three gain (K) values:

proportional (Kp), integral (Ki) and derivative (Kd).

These gains are used to calculate the overall output from

the error; the error being how far the robot is away from

the set point, the output being a heading.

The proportional value is used to diminish any error

in the present by multiplying Kp by the error at a spe-

cific time to produce an output value of some proportion

to the error, accounting for the present error.

The integral value is the sum of the previous n errors

multiplied by Ki. Ki is typically a very small value. The integral accounts for past errors,

bringing the output closer to the set point at a faster rate.

The derivative value attempts to eliminate future errors by taking the current rate of change

and multiplying by Kd. This purpose of this is to balance out the proportional and integral

values by reducing the rate of change and therefore reducing the overall oscillation, keeping the

robot from veering too far from the set point.

I = Ki

n∑
i=(t−n)

ei

D = Kd(et − et−1)

Figure 4: Formulae as imple-
mented.

Implementing these formulae directly could be problematic

and also quite expensive computationally. Instead, some approx-

imations are used, see figure 4. These offer a good compromise

between accuracy and overhead. For the integral output, a ring

buffer with 50 elements is used to store the last 50 errors, the

sum of which is then multiplied by Ki. The previous error (et−1)

can be accessed via the last() method of the custom ring buffer

implementation, allowing the derivative output to be calculated

with no extra state. The proportional output can be calculated as originally defined as it does

not use any operations other than multiplication.

4

3.2.2 Tuning

Unfortunately there is no general case in which to determine the gain values as they are context

sensitive. To find ideal values for Kp, Ki and Kd, the controller needs to be tuned. Oscillation

in this domain relates to how far to output moves the robot past the set point. The resulting

gains should limit oscillation while still acting appropriately to changes.

Tuning begins by setting Kp to a low value, 0.01 was used for this project. The first variable

to tune is Kd which is initially set to 100Kp, in this case 1. Kd is then raised until there is

reasonably large oscillation about the set point, and then it is lowered by a factor of 4. In this

instance the oscillations were large with Kd = 5, resulting in a Kd of 1.3 after some rounding to

1 d.p. This value for Kd gives a smooth output and is taken as the final value.

Kp is to be tuned next. With Kp = 0.01 the system is not showing oscillation, which means

that it should be raised by a factor of 10 until it does so. It begins oscillating with the first

increase to 10, and should therefore be reduced by a factor of 4, ending with Kp = 0.03, again

rounded to 1 d.p.

To tune Ki, it initially needs to be set to a very low value, so Ki = 0.00001. Similarly to

Kp it is raised by a factor of 10 until the system oscillates, which was immediately when it was

raised to 0.0001. At this point the value should be lowered by a factor of 2 to give Ki = 0.00005.

This gain value works very well and didn’t need any fine tuning.

Figure 5: Edge-following an octagon.

The end result of this tuning can be seen in

figure 5. This shows that it can work not only

on the outside of a shape, but also the inside.

It can also be seen that it take the corners

somewhat wide. This is because the sensors

used to detect an edge range from −110◦ to

110◦, rather than −90◦ to 90◦, due to the sen-

sor readings not taking into account the sen-

sors at ±90◦, so the robot goes slightly past

the corner before turning due to the sensor be-

ing further back. This led to the robot being

past its set point at all times and so would not

follow the specified limit of 500mm, though it

did take the corners much tighter.

The implementation of this behaviour in

the Follow class is carried out in a similar fash-

ion to avoid obstacles, so that it can be used in the subsumption architecture. This consists of

a state machine with two states: idle and follow, the latter contains the PID implementation.

This behaviour is given a priority of 60 in Aria, allowing it to be suppressed so that obstacles

can be avoided should the robot get too close.

5

3.3 Wandering

With the currently defined behaviours the robot would be immobile in an empty space, due to

the requirement of proximity of the current behaviours. Therefore, a behaviour allowing the

robot to wander will be defined. It should move at a speed of 50mm/s for a randomly chosen

distance in the range of 0.5m and 1.5m and then turn in a random direction by a random angle

between 20◦ and 160◦.

//random num between 500 & 1500

d i s t ance = (rand () % 1000) + 500 ;

//random num between 20 & 160

ang le = (rand () % 140) + 20 ;

Figure 6: Generating pseudo-random num-
bers in a range in C++.

Computers are not very good at generating ran-

dom numbers without complex algorithms or ad-

ditional hardware, neither of which being suitable

for this project. A compromise is to use a pseudo-

random number generator such as the rand() func-

tion from the C standard library (stdlib.h). To get

a number in a specific range it is necessary to use

the % or modulo C/C++ operator. This binary operator operator returns the remainder of

the division of two integers. The result (x) of an expression a%b is guaranteed to satisfy the

condition 0 ≤ x ≤ b. Using a combination of the rand() function, the % operator and simple

addition, the angle to be turned and distance to be travelled is calculated as shown in figure 6.

Figure 7: Wandering around.

The direction of the turn is derived from the parity of

the generated angle, i.e. whether it is odd or even. If the

angle is odd the robot will turn right and left if it is even.

This approach was chosen to reduce the number of calls

to the rand() function, as it was deemed unnecessary

in this situation due to the angle itself being randomly

generated.

The distance the robot has travelled at its current

iteration begins when a turn is completed. A turn is

said to be complete when the angle the robot is facing is

the summation of the angle it was facing when it began

turning and the desired heading. This is implemented

in the bool turnComplete() method of the Wander class.

The instance of this behaviour has been given the

priority of 50. The reason for this is that it is necessary

for the follow and avoid behaviours to inhibit wandering or else it will interfere with their

operations. For example, the robot could be following a wall and then wander decides that it is

time to turn in to the wall being followed causing it to crash.

6

3.4 Mapping

Mapping is the process of creating a map of the robot’s surroundings relative to the position

of itself. The robot first needs to know its own position relative to where it started, so that it

knows how far it has moved and in which direction. The process used to calculate this is called

dead reckoning.

Dead reckoning uses the last known position along with some movement to calculate the

current position. The formula pt = pt−1 + movement can be used to generalise this process,

where p is position and t is time. To measure movements the PeopleBot uses optical encoders

to determine the speed of each wheel. These encoders record a number of ticks, the difference

between ticks being a known amount, and the time taken for these ticks. From these readings

it can be calculated how far the robot has moved, and also how much it has turned, using some

formulae.

∆θ = 2π(T1 − T2)
rw
TRL

∆x = cos(θ)(T1 + T2)
πrw
TR

∆y = sin(θ)(T1 + T2)
πrw
TR

Figure 8: Dead reckoning formulae

Figure 8 shows the formulae for calculating the dif-

ferences in x, y and θ using readings from the robot’s en-

coders and some known values. T is the number of ticks

reported by each encoder (T1 and T2 for each wheel) and

TR is the number of ticks needed for a full rotation. rw

is the radius of each wheel and L is the distance be-

tween the two wheels. The new position is calculated

by adding these differences to the previous position, i.e.

(x′, y′, θ′) = (x+ ∆x, y + ∆y, θ + ∆θ).

xs = cos(θs)(D +R)

ys = sin(θs)(D +R)

[
x′

y′

]
=

[
xs

ys

][
cos(θr) − sin(θr)

sin(θr) cos(θr)

]

(x, y) = (x′ + xr, y
′ + yr)

Figure 9: Mapping formulae

Now that the robot knows where it is, it can begin

mapping the environment around it using the sonar sen-

sors. The sonar sensors report two pieces of information

to Aria when an obstacle is detected: the distance and

the angle to the obstacle (D and θs, respectively). From

these two things, the coordinates of the point of detec-

tion for the robot’s current coordinate system (xs, ys)

can be calculated. This point now needs to be trans-

formed to the global coordinate system, first by rotat-

ing by the robot’s heading (θr), then translate by the

robot’s position (xr, yr) to give the the final map point

(x, y). Figure 9 shows the formulae for calculating the map point, R is the robot’s radius.

This process is completed every other tick of the robot’s clock. The sonar sensors used

to detect edges are grouped into ranges of 30◦ and iterated through, adding to five readings

from distinct sensors. Once there are five points collected, they are transmitted over a network

connection via TCP/IP to a client application. The client application has been written using

the Qt framework to allow real-time visualisation of the map being created. The application

allows zooming (on the (invisible) axes) with the mouse wheel and movement of the axes with

7

the arrow keys. Upon executing the application it is necessary to connect to the server (the

robot controller) by pressing the ”C” key, and can be disconnected from the server by pressing

the ”D” key. Pressing the ”S” key will save a png image file of the current visualisation area

to the working directory named ”map.png”. It was chosen to buffer five points then send them

all at once to save on small network transfers, though this makes the visualisation slightly less

real-time.

In the Map class where this is all implemented, the use of ArSocket::accept caused the whole

application to stall until a client connected, making the robot stand still and eventually Mo-

bileSim disconnected. This problem was solved by having ArSocket::accept run in a separate

thread.

This behaviour is given a priority of 40 in Aria though this is irrelevant in this scenario as

it doesn’t need to ever change the desiredState; it is a purely passive behaviour and will be run

regardless.

4 Experimental Design

The above specified behaviours are to be tested using several purpose built maps which will test

the effectiveness of each behaviour individually, as well as combined to test the subsumption

architecture.

4.1 Obstacle Avoidance

Testing the obstacle avoidance behaviour involves a simple map with a small square obstacle in

a rectangular enclosure, see figure 10. Three tests will be completed which utilise this map:

Figure 10: Avoidance test map.

8

1. Move towards an obstacle head-on. This will test whether the behaviour works in this

situation as it was given no special treatment in the implementation.

2. Move towards an obstacle at a shallow angle. This is a typical scenario for avoiding obstacles

3. Move towards a sharp corner. This situation may arise when the follow behaviour gets too

close to an edge and connot turn away in time.

4.2 Edge Following

To test edge following two maps have been created: an octagon (figure 11a) and a square (figure

11b). Having the robot follow the outside of the octagon will demonstrate how smoothly it can

follow around shallow corners and how much oscillation it will show. This map is also useful for

showing how well it will follow the internal corner of the inside of the shape. The square map

(a) Octagon map (b) Square map

Figure 11: Edge following test maps.

when followed from the outside should show that some corners are too sharp to follow and it will

carry on straight forward or veer away. Allowing the robot to follow the inside of the square will

show how well the PID controller holds up against some tight corners.

4.3 Wandering

The nature of the wandering behaviour limits the ability to test due to its random nature, though

figure 7 demonstrates its abilities above.

4.4 Mapping

The mapping behaviour is tested by connecting the client to the robot controller which will then

automatically begin transmitting coordinates to the client. The octagon map (figure 11a) will

9

be the one to be mapped.

4.5 Architecture

For testing the overall architecture of the behaviours implemented for this project, the map from

the avoidance tests (figure 10) will be used with a different starting point and the robot will be

let loose to demonstrate all the behaviours, while also mapping at the same time.

5 Results

5.1 Obstacle Avoidance

Figure 12 shows the results of the tests performed on the obstacle avoidance behaviour. Figure

12a shows a head-on obstacle being avoided by sharply turning left to the full heading of 135◦.

This is the expected result of this test and shows the performance of the behaviour in this

circumstance is satisfactory. Figure 12b shows the avoidance of an obstacle at a shallow angle

and also performs as expected. Figure 12c demonstrates the effectiveness of this behaviour when

the robot is sent in to a corner. It shows how it will sharply turn away from the first edge, then

gradually turn away from the second edge. This is a practical solution for a tricky situation,

despite not even being treated as a special case.

(a) Test 1 (b) Test 2 (c) Test 3

Figure 12: Obstacle Avoidance test runs.

5.2 Edge Following

The result of the edge following of an octagon can be seen above in figure 5, both inside and out.

The performance of this test is discussed above. The outside test on the square map (figure 13)

shows some unexpected behaviour when the first corner is met. This corner should be too steep

for the PID controller to handle as it should reach more than 1000mm away before it has turned

10

enough to see it. The second corner is handled as expected: it begins gently turning around the

corner then veers off due to moving beyond 1000mm of the edge. Following the inside of the

square functions as intended, though it does get quite close the the edges during the corners.

Due to this it can be seen some sharp turns being made at the apex. This is the avoid behaviour

kicking in and is the first demonstration of the subsumption architecture at work.

Figure 13: Edge following a square.

5.3 Wandering

As explained in the previous section figure 7 demonstrates the results of testing the wandering

behaviour and shows the expected outcome.

5.4 Mapping

Figure 14: Mapping an octagon.

Figure 14 shows the output produced by the mapping client.

It shows the points transmitted by the robot’s controller

transformed to a different coordinate system so that the map

produced is understandable to humans. It is also rotated by

90◦ which is due to the robot having a starting heading of

90◦, though it always begins on an internally set 0◦. The

resulting image not only shows the outline of the map cor-

rectly, but the points are close enough together that edges

can easily be deduced.

5.5 Architecture

The result of the subsumption test can be seen in figure 15.

It shows all of the behaviours working: It wanders around until it finds the obstacle; It tries to

follow the edge of the obstacle, then resumes wandering; It comes across the wall and begins

11

following; In the bottom-right corner it gets a little too close to the wall and the avoids it by

turning away sharply; At this point it has gotten far enough from the wall that it resumes

wandering; It then continues following the wall around two more corners. The map produced

by the client is shown in figure 15b (rotated 90◦). This is a fairly complete map, though some

areas such as the top and left side of the obstacle and the corners are incomplete. The corners

are hard to map as the sensors are unlikely to pick them up. The obstacle wasn’t fully detected

as the robot doesn’t get very close to two of the sides.

(a) Roaming free (b) Produced map

Figure 15: Subsumption test.

6 Conclusion

This project has proven to be a success from the results of the testing. It has provided simple

functionality, including obstacle avoidance and wandering, and the advanced functionality of edge

following and mapping with real-time visualisation. An extra feature that could have been added

is an implementation of the RANdom SAmple Consensus (RANSAC) algorithm. This algorithm

would enable the mapping to determine where the edges are, and so can replace the dots with

lines. The addition of a RANSAC implementation would have made this project complete.

Despite the lack of this feature, this robotics controller fulfils its purpose of implementing multiple

behaviours using appropriate control methods and an appropriate architecture.

12

	Introduction
	Architectural Design
	Behavioural Design
	Obstacle Avoidance
	Edge Following
	PID
	Tuning

	Wandering
	Mapping

	Experimental Design
	Obstacle Avoidance
	Edge Following
	Wandering
	Mapping
	Architecture

	Results
	Obstacle Avoidance
	Edge Following
	Wandering
	Mapping
	Architecture

	Conclusion

